شبکه‌های عصبی مصنوعی : مدلی برای پیش‌بینی

نویسندگان

1 روانشناس

2 استادیار دانشگاه تربیت مدرس

3 استاد دانشگاه شهید بهشتی

4 استاد دانشگاه تربیت مدرس

5 استادیار دانشگاه بابل

چکیده

با توجه به محدودیتها و ابهامهای موجود در مدلهای متداول آماری مانند از دست دادن داده‎های مربوط به تعاملهای پیچیده و غیرخطی بین سازه‎های روان‎شناختی و برخی مفروضه‎ها مانند همگونی واریـانسها و توزیع نرمال، پژوهش حاضر توانایی مدلهای شبکه‎های عصبی مصنوعی را برای مطالعات پیش‎بینی بررسی کرد. گروه‎ نمونه‎ای شامل 456 دانش‎‌ـ آموز پسر سال سوم دبیرستان پرسشنامه شخصیتی کالیفرنیا (CPI؛ گاف، 1975) و پرسشنـامه همسازی دانـش‎آموزان مدرسه (AISS، سینها و سینگ، 1993) را تکمیل و در پنج سطح همسازی (از ناسازگار تا کاملاً سـازگار) طبقه‎بندی شدند. تحلیل عاملی ترکیبهـای مختلف رگه‎هـای شخصیتی نشان داد که برخی از شبکه‎ها به دلیل ناهمخوانی بین تعداد متغیرها و معماریهای شبکه، نمی‎توانند همسازی را پیش‎بینی کنند. اما بازنگری معمـاری‎ها و تکرار شبکه‎هـای جدید نسبت پیش‎بینی درست (نسبـت طبقه‎بندی شرکت‎کنندگان در سطوح همسازی مبتنی بر AISS) را بـه گونه‌ای معنـادار افـزایش داد. مـناسب‎ترین شبکـه برای پیش‎بیـنی همسازی شامـل ترکیبی از متغیرهای شنـاختی انعطاف‎پذیری، زنانگی، اشتراک و تحمل بود.

کلیدواژه‌ها